import Relation.Binary.PropositionalEquality as Eq
open import Data.Fin using (Fin; suc; zero)
open import Data.Nat using (ℕ; suc)
open Eq using (_≡_; refl)
open import CBPV.Effects.Terms
open import Effects
module CBPV.Effects.Renaming (E : Effect) where
open import CBPV.Effects.Types E
open import CBPV.Effects.SyntacticTyping E
open Effect E
Ren : ℕ → ℕ → Set
Ren n n′ = (m : Fin n′) → Fin n
ext : ∀ {n n′ : ℕ} → Ren n n′ → Ren (suc n) (suc n′)
ext ρ zero = zero
ext ρ (suc m) = suc (ρ m)
mutual
_[_]v : ∀ {n n′ : ℕ}
→ Val n′
→ Ren n n′
→ Val n
unit [ _ ]v = unit
♯ m [ ρ ]v = ♯ ρ m
⟪ M ⟫ [ ρ ]v = ⟪ M [ ρ ]c ⟫
⟨ V₁ , V₂ ⟩ [ ρ ]v = ⟨ V₁ [ ρ ]v , V₂ [ ρ ]v ⟩
inl V [ ρ ]v = inl (V [ ρ ]v)
inr V [ ρ ]v = inr (V [ ρ ]v)
_[_]c : ∀ {n n′ : ℕ}
→ Comp n′
→ Ren n n′
→ Comp n
(ƛ M) [ ρ ]c = ƛ M [ ext ρ ]c
(M · V) [ ρ ]c = M [ ρ ]c · V [ ρ ]v
(V » M) [ ρ ]c = V [ ρ ]v » M [ ρ ]c
(return V) [ ρ ]c = return V [ ρ ]v
($⟵ M ⋯ N) [ ρ ]c = $⟵ M [ ρ ]c ⋯ N [ ext ρ ]c
(V !) [ ρ ]c = V [ ρ ]v !
($≔ V ⋯ M) [ ρ ]c = $≔ V [ ρ ]v ⋯ M [ ext (ext ρ) ]c
(case V inl⇒ M₁ inr⇒ M₂) [ ρ ]c = case V [ ρ ]v inl⇒ M₁ [ ext ρ ]c inr⇒ M₂ [ ext ρ ]c
⟨ M₁ , M₂ ⟩ [ ρ ]c = ⟨ M₁ [ ρ ]c , M₂ [ ρ ]c ⟩
projl M [ ρ ]c = projl (M [ ρ ]c)
projr M [ ρ ]c = projr (M [ ρ ]c)
tick [ ρ ]c = tick
infix 8 _[_]v
infix 8 _[_]c
↑↑ : Ren (suc n) n
↑↑ zero = zero
↑↑ = suc
↑↑↑ : Ren (suc n) n
↑↑↑ zero = zero
↑↑↑ (suc zero) = suc zero
↑↑↑ = suc
mutual
val-typepres-renaming : ∀ {ρ : Ren n n′}
→ Δ ⊢v V ⦂ A
→ (∀ (m : Fin n′) → Δ m ≡ Γ (ρ m))
→ Γ ⊢v V [ ρ ]v ⦂ A
val-typepres-renaming (typeVar {m = m}) pf rewrite pf m = typeVar
val-typepres-renaming typeUnit _ = typeUnit
val-typepres-renaming (typeThunk ⊢M) pf =
typeThunk (comp-typepres-renaming ⊢M pf)
val-typepres-renaming (typePair ⊢V₁ ⊢V₂) pf =
typePair
(val-typepres-renaming ⊢V₁ pf)
(val-typepres-renaming ⊢V₂ pf)
val-typepres-renaming (typeInl ⊢V) pf =
typeInl (val-typepres-renaming ⊢V pf)
val-typepres-renaming (typeInr ⊢V) pf =
typeInr (val-typepres-renaming ⊢V pf)
comp-typepres-renaming : ∀ {ρ : Ren n n′}
→ Δ ⊢c M ⦂ B # φ
→ (∀ (m : Fin n′) → Δ m ≡ Γ (ρ m))
→ Γ ⊢c M [ ρ ]c ⦂ B # φ
comp-typepres-renaming (typeAbs ⊢M) pf =
typeAbs (comp-typepres-renaming ⊢M ext-pf)
where
ext-pf = λ where
zero → refl
(suc m) → pf m
comp-typepres-renaming (typeApp ⊢M ⊢V) pf =
typeApp (comp-typepres-renaming ⊢M pf) (val-typepres-renaming ⊢V pf)
comp-typepres-renaming (typeSequence ⊢V ⊢M) pf =
typeSequence
(val-typepres-renaming ⊢V pf)
(comp-typepres-renaming ⊢M pf)
comp-typepres-renaming (typeForce ⊢V φ′≤φ) pf =
typeForce (val-typepres-renaming ⊢V pf) φ′≤φ
comp-typepres-renaming (typeRet ⊢V pure≤φ) pf =
typeRet (val-typepres-renaming ⊢V pf) pure≤φ
comp-typepres-renaming (typeLetin ⊢M ⊢N φ₁+φ₂≤φ) pf =
typeLetin
(comp-typepres-renaming ⊢M pf)
(comp-typepres-renaming ⊢N ext-pf)
φ₁+φ₂≤φ
where
ext-pf = λ where
zero → refl
(suc m) → pf m
comp-typepres-renaming (typeSplit ⊢V ⊢M) pf =
typeSplit
(val-typepres-renaming ⊢V pf)
(comp-typepres-renaming ⊢M ext-pf)
where
ext-pf = λ where
zero → refl
(suc zero) → refl
(suc (suc m)) → pf m
comp-typepres-renaming (typeCase ⊢V ⊢M₁ ⊢M₂) pf =
typeCase
(val-typepres-renaming ⊢V pf)
(comp-typepres-renaming ⊢M₁ ext-pf₁)
(comp-typepres-renaming ⊢M₂ ext-pf₂)
where
ext-pf₁ = λ where
zero → refl
(suc m) → pf m
ext-pf₂ = λ where
zero → refl
(suc m) → pf m
comp-typepres-renaming (typeCpair ⊢M₁ ⊢M₂) pf =
typeCpair
(comp-typepres-renaming ⊢M₁ pf)
(comp-typepres-renaming ⊢M₂ pf)
comp-typepres-renaming (typeProjl ⊢M) pf =
typeProjl (comp-typepres-renaming ⊢M pf)
comp-typepres-renaming (typeProjr ⊢M) pf =
typeProjr (comp-typepres-renaming ⊢M pf)
comp-typepres-renaming (typeTick tock≤φ) _ = typeTick tock≤φ